色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Due to its high hardness and wear resistance, tungsten carbide  is widely used as a variety of processing tool materials, known as “industrial teeth”. Among them, WC Co tungsten carbide  is the largest production and consumption of tungsten carbide  materials. After decades of development, in the engineering application of tungsten carbide , the hardness and wear resistance can basically meet the requirements of service performance, while the fracture strength and impact toughness are the bottleneck of expanding the application of tungsten carbide , especially the high-end application. For a long time, there is a lack of systematic understanding about the strengthening and toughening mechanism of tungsten carbide , which is a kind of metal ceramic dual phase composite and multi-phase composite material with additives. The relationship between multi-component, structure, mechanical behavior and comprehensive performance of this kind of material system needs further study.

1.scientific problems

At present, the common basic research scientific problems in the field of tungsten carbide  from engineering application can be summarized as follows:

in the industrial preparation of ultrafine and nanocrystalline tungsten carbide , the grain growth must be controlled by adding grain growth inhibitors. However, inhibitors usually have adverse effects on the toughness and strength of tungsten carbide . It is necessary to fully understand the stability control factors of inhibitor derived microstructure and the effects on the microstructure and mechanical properties of tungsten carbide .

With the decrease of the grain size of the hard phase below the submicron scale, the internal interface gradually becomes the main factor affecting the toughness and strength of the tungsten carbide . However, the factors that can stabilize the WC / CO and WC / WC boundaries and the mechanism of the stabilization are not well understood, and the formation and evolution mechanism of the low-energy interface are not well understood.

Through the study of the mechanical behavior and micro mechanism of tungsten carbide  at room temperature and high temperature, the understanding of the strengthening and toughening mechanism in the service process can be deepened, so as to guide the design and preparation of high-performance tungsten carbide . At present, there is no systematic understanding of the micro deformation mechanism, the source of plasticity and the high temperature mechanical behavior of tungsten carbide .

2.Research progress

Professor Song Xiaoyan’s team of Beijing University of technology has carried out a series of basic researches on the practical problems in the engineering application of tungsten carbide . In 2013, the research team first prepared nanocrystalline tungsten carbide  block materials with high density and uniform structure, which have both high hardness and high toughness, and put forward the interface coherent toughening theory of nanocrystalline two-phase tungsten carbide  (ACTA mater. 2013, 61, 2154-2162), which has been fully verified in in-situ mechanical experiments (mater. Res. lett. 2017, 5, 55-60). Recently, combining theoretical modeling and experimental design, the research group has deeply studied various “interface structures” that may appear in tungsten carbide  materials, and found several kinds of interface structures with 2-6 atomic layer thickness, influencing factors, stabilization approaches and micro mechanisms. Based on the optimization of additives and fine-tuning of composition, the accurate control of the stability of interface structure is realized. The mechanism of anti intergranular fracture of phase interface matching materials with various elements such as V, Cr, Ti, Ta and Nb is proposed. Furthermore, the influence of interface structure stability and surface energy anisotropy on the formation and evolution of ∑ 2 and ∑ 13A at low energy boundaries was obtained by optimizing the inhibitors of grain growth and controlling the Sintering Densification temperature. Thus, the controllable preparation problem of increasing the ratio of WC / CO coherent phase boundary to WC / WC low-energy grain boundary distribution in tungsten carbide  is solved. Relevant achievements were successively published in Acta mater. 2018, 149, 164-178 and Acta mater. 2019, 175, 171-181 under the titles of “complexions in WC Co tungsten carbide s” and “l(fā)ow energy grain boundaries in WC Co tungsten carbide s”. Guided by the basic research, the research group and the enterprise cooperated to prepare the ultra-high strength and high toughness tungsten carbide  bars with the average transverse fracture strength of more than 5200mpa and fracture toughness of more than 13.0mpa · M1 / 2. The fracture strength value is the highest performance index of fracture strength among the similar tungsten carbide  reported in the world.

In addition, the research group has done a lot of research on the relationship between the microstructure, mechanical behavior and comprehensive properties of tungsten carbide . In the aspect of experiment, the microstructure evolution of tungsten carbide  under external loading, especially the dislocation and stacking fault motion law, was realized through in-situ mechanical experiment.

With the help of fine structure characterization and crystallography analysis, the interaction mechanism of crystal defects of hard phase and ductile phase in high strength and toughness tungsten carbide  was proposed, and the mechanism of its effect on delaying crack nucleation and resisting crack growth was revealed. Especially, in view of the strain behavior of tungsten carbide , it is proposed that the main slip system of WC phase can produce dislocation of compression bar at room temperature, while the activation of new slip system at high temperature can provide plastic contribution, which quantitatively reveals the relationship between the plastic strain of tungsten carbide  and the movement of slip system and dislocation as well as the change rule with temperature. In the aspect of simulation calculation, the mechanical behavior of bicrystal and polycrystal tungsten carbide  at room temperature and high temperature was studied by molecular dynamics method, and the micro mechanism of the influence of grain boundary, phase boundary, intragranular defect and grain size on the deformation and fracture behavior of tungsten carbide  was clarified on the atomic scale. On the electronic scale, the electronic density of state and bonding form of WC are calculated and analyzed by the first principle, and the micro mechanism of high hardness of WC is clarified.

It is proposed that the elastic modulus and hardness of WC can be further improved by micro solid solution of metal elements with high work function, and then higher hardness re solid solution unbonded phase WC bulk material is successfully synthesized in the experiment. In 2019, the above research progress was published in three consecutive articles in the international well-known journal crystal Journal: Acta crystal. 2019, B75, 134-142 (the first author is Fang Jing, master’s student); Acta crystal. 2019, B75, 994-1002 (the first author is Dr. LV Hao); Acta crystal. 2019, B75, 1014-1023 (the first author is Hu Huaxin, doctoral student). On the meso and macro scale, a finite element model based on the real three-dimensional structure of tungsten carbide  is established. The heterogeneous strain response and plastic deformation behavior of tungsten carbide  under the interaction of as prepared residual thermal stress and external stress in the bearing process are studied. The relationship between microstructure deformation behavior fracture toughness is revealed. This achievement was published in int. J. plasticity, 2019, 121, 312-323 (the first author is Dr. Li Yanan).

Figure 1. Interface structure and evolution characteristics of WC / CO phase boundary formed by adding VC and Cr3C2

New Breakthrough of Tungsten Carbide with Superior Properties of the Beijing University 2

Figure 2. Effect of additives, temperature and surface energy anisotropy on the formation and evolution of low energy grain boundaries in tungsten carbide

New Breakthrough of Tungsten Carbide with Superior Properties of the Beijing University 3

Figure 3. Effect of WC grain rotation on micro plastic deformation in nanocrystalline tungsten carbide

New Breakthrough of Tungsten Carbide with Superior Properties of the Beijing University 4

Figure 4. Microstructure and mechanical properties of a new type of high hardness WC block material with re unbonded phase

Figure 5. Typical dislocation reactions (including dislocation decomposition, the formation of compression bar dislocations, etc.) on the WC base plane and the main slip plane on the cylinder

New Breakthrough of Tungsten Carbide with Superior Properties of the Beijing University 6

Figure 6. Effect of inhomogeneous strain response on fracture behavior of tungsten carbide  during compression

New Breakthrough of Tungsten Carbide with Superior Properties of the Beijing University 7
国产精品毛片一区二区三-av蜜臀永久免费看片-三级国产美女搭讪视频-亚洲中文字幕在线观看一区二区| 精品人妻一区二区三区久久91-久久精品亚洲国产av搬运工-日本熟女人妻一区二区三区-亚洲国产精品高清线久久| 97视频资源在线观看-国产av天堂久久精品-亚洲av一二三四区又爽又色又爽-悠悠色网视频在线精品| 中文国产成人精品久久一-亚洲一区二区精品视频网站-在线深夜羞羞福利视频-麻豆视频传媒免费入口| 日韩精品极品系列在线免费视频-国产中文字幕有码视频-日韩一区二区免费电影-成人夜晚在线观看视频| 欧美日韩精品啪啪91-成年人免费在线观看大片-国产精品麻豆一区二区三区v视界-av中文在线中文亚洲| 日韩视频精品在线播放-国产91亚洲精品久久-亚欧洲乱码视频在线观看-亚洲国产成人91精品| 一本色道久久综合亚洲精-亚洲精品一区二区三区乱码-性生活高清免费视频免费-99热这里只有的精品3| 久久偷拍视频免费观看-国产精品国产精品偷麻豆-国产精品一品二区三区最新-精品国产亚洲一区二区三区| 少妇被搞高潮在线免费观看-亚洲av成人精品小宵虎南-日韩性生活免费看视频-日韩黄色大片在线播放| 色哟哟中文字幕在线播放-人人妻人人澡人人狠人人爽-国产午夜福利精品一区二区三区-性生活在线免费视频观看| 亚洲国产国语对白在线视频-中文字幕中文字字幕码一区二区-毛片av在线免费观看-免费在线观看av毛片| 亚州一区二区五码在线观看-97在线视频免费公开-小明久久国内精品自线-人妻av天堂综合一区| 国产做国产爱免费视频-男人免费视频一区二区在线播放-精品一区二区三区蜜桃麻豆-成年人免费看国产视频| 国内一级一厂片内射视频播放磨-国产乐播传媒在线观看-让你操水蜜桃在线观看-深夜三级视频在线观看| 妖精亚洲av成人精品一区二区-精品日韩一区二区三区av-在线精品国精品国产尤物-在线播放国产精品三级网| 日韩有码中文在线视频-少妇我被躁爽到高潮在线观看-精品丰满人妻一区二区三区-亚洲天堂高清在线播放| 国产精品国产亚精品不卡-欧美淫淫基地电影网站-亚洲高清精品人妻偷拍-四虎精品永久在线播放| 亚洲精品在线观看一区二区三区-亚洲高清在线自拍视频-日本一区二区三区午夜视频-日韩精品极品视频在线| 亚洲av大片免费在线观看-97夫妻午夜精品在线-丰满人妻熟妇乱又伦精另类视频-国产男女啪啪视频观看| 久久亚洲av综合悠悠色-91手机精品免费在线播放-午夜福利一区二区三区在线播放-97在线精品观看视频| 国产精品熟女露脸对白-欲求不满中文字幕在线-日本一区二区三区的免费视频观看-激情久久av一区二区三区四区| 亚洲国内精品一区二区在线-亚洲国产成人精品青青草原-精品在线视频免费在线观看视频-亚洲美女激情福利在线| 追虎擒龙国语高清在线观看完整版-色婷婷一区二区三区免费-网友自拍在线视频国产-草草久在线视频在线观看| 午夜视频在线观看免费国产-国产精品91在线视频-欧美黄片在线免费播放-久久综合九色综合婷婷| 一本色道久久综合亚洲精-亚洲精品一区二区三区乱码-性生活高清免费视频免费-99热这里只有的精品3| 妖精亚洲av成人精品一区二区-精品日韩一区二区三区av-在线精品国精品国产尤物-在线播放国产精品三级网| 2020天天操夜夜操-亚洲色图视频在线观看,-亚洲色图专区另类在线激情视频-岛国精品毛片在线观看| av成人在线免费观看-亚洲av黄片免费观看-亚洲综合精品天堂夜夜-久久国产精品久久国产精品| 国产精品久久中文字幕网-国产亚洲av无色肉丝网站-自拍偷拍亚洲精品偷一-日本久久一区二区三区| 午夜狂情三级伦理涩之屋-亚洲国产精品美女嫩模综合在-久热在线观看免费视频-国产精品伦子一区二区三区| 亚洲熟女少妇中文字幕-日韩精品一区二区三区激情视频-一个人看的视频在线播放-亚洲综合一区二区国产精品| 成人国产精品中文字幕-国产馆在线精品极品麻豆-国产极品视频一区二区三区-国产一区二区三区无遮挡| 亚洲性生活免费播放av-成人深夜在线免费观看-久久国产精品亚洲精品-黄色大片亚洲黄色大片| 亚洲精品国产精品乱码不-亚洲天堂精品自拍偷拍-风骚少妇久久精品在线观看-一区二区在线观看视频在线观看| 亚洲无吗视频在线观看-成人免费在线视频平台-国产午夜视频看看果冻-国产黄色片国产黄色片| 成人精品一区二区三区不卡-十八禁啪啪啪一区二区三区-后入黑丝美女在线观看-国产熟女啪啪免费视频| 在线观看亚洲天堂成人-亚洲大片久久精品久久精品-日韩在线免费观看毛片-成年大片免费视频播放| 国产青青草原一区二区三区-日本自拍视频在线观看-国产一二三区精品亚洲美女-中文字幕日产人妻久久| 网站视频精品一区二区在线观看-中文有码中文字幕免费视频-99热这里有精品久久-日韩av在线高清免费观看| 女同精品女同系列在线观看-亚洲av不卡一区二区三区四区-亚洲不卡一区三区三州医院-中文字幕亚洲人妻系列|