色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

Development history of shape memory alloy

Shape memory alloy is a kind of shape memory material with excellent properties. When it is affected by external force or magnetic change, it can keep its previous state, which is called shape memory effect. The application of these materials is very simple, in which the materials are easy to deform by applying external force. When they are heated to a certain temperature by external or internal heating, they will shrink or return to their original shape. In 1932, Swedish physicists first discovered this shape memory effect in Au CD alloy. By 1938, greninger and mooradian first observed this shape memory effect in Cu Zn and Cu Sn alloys. Until 1969, SMA was successfully applied commercially for the first time. Raychem company successfully applied NiTi alloy as a pipe joint to the oil pressure system of F14 fighter in the United States, and achieved good sealing performance of the oil pressure system.

A Detailed Introduction to Shape Memory Metal 2

Shape memory effect

The shape memory effect of shape memory alloy is essentially related to the martensitic transformation in the alloy. The shape memory alloy exists in the form of austenite at higher temperature and martensite at lower temperature. When SMA is heated, it begins to change from martensitic phase to austenitic phase. A s is

It is defined as the temperature at which austenitic transformation begins, and AF as the temperature at which austenitic transformation ends. When SMA is heated above a s temperature, the martensitic phase will gradually change back to the austenite phase and return to the original shape at high temperature, which can also be carried out under high load conditions. In the cooling process, the starting temperature from austenite to martensite is defined as MS, and the temperature at the end of martensite transformation is defined as MF. The temperature at which martensitic transformation is no longer induced by stress is defined as MD. Above this temperature, SMA deforms under the action of external force, and immediately returns to its original shape after unloading. Shape memory alloys have three different types of memory effects (as shown in Figure 1), which are characterized as follows:

① One way memory effect. When the temperature is reduced, the alloy will deform, and then it will return to the state before deformation by increasing the temperature, that is, there is shape memory effect in the heating process;

② Two way memory effect. When the alloy returns to the state at high temperature during heating, and returns to the shape at low temperature when the temperature is reduced. Because the two-way memory effect can only be obtained through proper “training” process and the strain at high temperature will be greatly reduced, so it has less commercial application. Heat force cycling is a kind of “training” method to realize the two-way shape memory effect. It achieves the purpose of “training” by cycling between austenite and specific martensite variants;

③ Whole process memory effect. It refers to the state when the alloy recovers to high temperature during the heating process. When the temperature is reduced to low temperature, the shape changes to the opposite shape when it changes to high temperature.

A Detailed Introduction to Shape Memory Metal 3

The shape memory effect is a non diffusion solid phase martensitic transformation. In addition, there are other phase transformation processes related to shape memory, such as R-phase transformation, which generally occurs in an intermediate phase transformation from austenite to martensite. There is thermal hysteresis in the reverse transformation of martensite, which is an index to measure the temperature difference between heating and cooling (i.e. Δ t = af-ms). This thermal hysteresis property is very important, and the thermal hysteresis of SMA material needs to be considered carefully in the process of target technology application, for example, for fast drive application, smaller thermal hysteresis is needed, while for pipeline connection, larger thermal hysteresis is needed to ensure that the predefined shape is maintained in a larger temperature range. The physical and mechanical properties (thermal conductivity, thermal expansion coefficient, resistivity, Young’s modulus, etc.) of some SMA before and after phase transition are also different. Austenite phase structure is relatively hard and has higher Young’s modulus, while martensite structure is softer and more malleable, that is, it can be easily deformed by applying external force.

A Detailed Introduction to Shape Memory Metal 4

Introduction of shape memory alloy materials

NiTi shape memory alloy has been widely used in biomedical fields such as alloy stent, minimally invasive medical devices, orthopedic surgery, brain surgery and stomatology due to its excellent biocompatibility and mechanical properties.

A Detailed Introduction to Shape Memory Metal 5

However, due to the obvious limitations or shortcomings of SMA, such as high manufacturing cost, limited recoverable deformation and service temperature, other types of shape memory materials are being explored.

High temperature shape memory alloy

Due to the higher and higher requirements for the service temperature of high temperature shape memory alloy, many researchers have increased the service temperature of shape memory alloy by adding the third element alloy in NiTi alloy. In fact, the high temperature shape memory alloy is defined as the shape memory alloy that can be used above 100 ℃, but due to the large

Most high temperature shape memory alloys show poor ductility and fatigue resistance at room temperature, so it is difficult to process and “train”, so the cost of manufacturing them is very expensive. Ferromagnetic shape memory alloy

Compared with the traditional temperature controlled shape memory alloy, the ferromagnetic shape memory alloy has larger output strain and higher response frequency. This is because the energy propagates through the magnetic field during the service process and is not affected by the thermal conductivity and heat dissipation conditions of the alloy material. Its shape memory effect is to excite twins through the external magnetic field

The preferred reorientation among the martensitic variants results in the macro shape deformation of the alloy. Ferromagnetic shape memory alloy can not only provide the same specific power as traditional memory alloy, but also transmit at a higher frequency. However, in general, ferromagnetic shape memory alloy will encounter similar design problems with traditional memory alloy in the application process. In addition, the hardness of ferromagnetic shape memory alloy is very large and brittle, so it can only be processed and operated at low temperature. Therefore, it is difficult to shape and shape ferromagnetic shape memory alloy, and it is not suitable for high temperature and high strength environment at present. Therefore, it is still necessary to further study the existing ferromagnetic shape memory alloy in order to further improve the performance of the material.

ferromagnetic shape memory alloy

Compared with the traditional temperature controlled shape memory alloy, the ferromagnetic shape memory alloy has larger output strain and higher response frequency. This is because the energy propagates through the magnetic field during the service process and is not affected by the thermal conductivity and heat dissipation conditions of the alloy material. Its shape memory effect is to stimulate the preferred reorientation between twin martensite variants through the external magnetic field The macro shape deformation of the alloy occurs. Ferromagnetic shape memory alloy can not only provide the same specific power as traditional memory alloy, but also transmit at a higher frequency. However, in general, ferromagnetic shape memory alloy will encounter similar design problems with traditional memory alloy in the application process. In addition, the hardness of ferromagnetic shape memory alloy is very large and brittle, so it can only be processed and operated at low temperature. Therefore, it is difficult to shape and shape ferromagnetic shape memory alloy, and it is not suitable for high temperature and high strength environment at present. Therefore, it is still necessary to further study the existing ferromagnetic shape memory alloy in order to further improve the performance of the material.

Shape memory film material

Due to the application of shape memory alloy materials in mechanical systems, especially in micro actuators, shape memory alloy films have been widely studied. Shape memory thin film materials are generally used as independent thin films to become micro actuators. In the rapid development of MEMS, NiTi thin film has become the first choice on the micro level

The actuator, due to its excellent shape memory performance and high frequency, can still maintain a large output power. It is expected that the micro NiTi drivers based on sputtered NiTi films will occupy a large part of the commercial market, especially for medical micro devices and implantable applications. However, the application of shape memory thin film materials in some fields with ambient temperature higher than 100 ℃ is limited, such as automobile engine, fire alarm and aviation turbine, so in recent years, the research on high temperature shape memory thin film materials with phase change temperature higher than 100 ℃ has been increased.

Development trend of shape memory alloy

(1) To develop new or improve the existing shape memory materials, for example, to add appropriate third alloying elements into the shape memory alloy system, improve its martensitic transformation, and achieve fine control of its transformation process at the micro level.

(2) Shape memory alloy with excellent functional properties can be compounded with other materials with good structural properties to meet the requirements of special field applications.

(3) In order to meet the demand of commercial application, we should increase its commercial application and improve the preparation method for large-scale production.

久久一日本道色综合久久大香-欧美午夜福利视频网站-亚洲av午夜精品一区二区-日韩精品区一区二区三区激情| 国产福利一区二区写真-久久国产电影在线观看-亚洲国产一区二区三区亚瑟-中文字幕乱码亚洲无线码二区| 国产福利一区在线观看蜜臀av-最新天堂中文在线官网-成人精品天堂一区二区三区-国产精品久久久久久久人貌| 亚洲国产精品无吗一区二区-伊人久久综合在线观看-欧美日韩在线精品视频二区-国产精品一区二区国产主播| 国产激情久久久久成熟影院-成人午夜免费在线视频-亚洲中文字幕成人综合网-色噜噜精品视频在线观看| 少妇高潮大片免费观看-九九热精品在线视频观看-中文字幕有码久久高清-免费国产一级一片内射中出| 五月六月丁花香激情综合网-久久这里只有精品好国产-很淫很堕落第一版主网-亚洲精品欧美精品国产精品| 日韩久久久久久中文字幕-九九热视频精选在线播放-亚洲最大黄色成人av-亚洲最大av一区二区| 国产深夜视频在线观看-丰满人妻熟妇乱又乱精品-青草视频在线观看资源-奇米网东京热日本人妻| 日韩欧美国产另类在线观看-精品人妻码一区二区三区剧情-国产91精品免费久久看-水蜜桃视频一区二区在线观看| 亚欧曰中文字幕av一区二区三区-最新国产情侣在线视频-黄片大全视频免费在线观看-久久超级碰碰碰一区二区三区| 麻豆国产av一区二区精品-久久福利社最新av高清精品-丝袜美腿亚洲综合伊人-亚洲欧洲av一区二区三区| 国产自拍成人激情视频-欧美大香蕉在线视频观看-精品人妻一区二区三区麻豆91-经典三级一区二区三区| av福利在线播放网站-午夜福利在线观看精品-久久精品女人av天堂-日本中文字幕在线乱码| 欧美福利在线观看视频-日本少妇一区二区三区四区-日韩人妻丝袜中文字幕-亚洲一区二区三区最新视频| 久久精品国产亚洲av麻豆甜-蜜桃亚洲精品一区二区三区-国产成a人亚洲精品无v码-午夜一区精品国产亚洲av| 日韩精品极品免费观看-91久久精品国产成人-成人亚洲国产精品一区不卡-免费在线播放韩国av| 亚洲av午夜精品久久看一区-日韩欧美91麻豆精东-久久一区二区三区在线观看-国产黄色人人爱人人做| 女同精品女同系列在线观看-亚洲av不卡一区二区三区四区-亚洲不卡一区三区三州医院-中文字幕亚洲人妻系列| 精品人妻一区二区三区久久91-久久精品亚洲国产av搬运工-日本熟女人妻一区二区三区-亚洲国产精品高清线久久| 久久都是精品久久都是精品-精国精品一区二区成人-亚洲品质自拍在线观看-中文 字幕乱码高清视频| 欧美成人国产精品137片内射-空之色水之色 在线观看-精品国产亚洲一区二区在线观看-色婷婷精品午夜在线播放| 国产精品久久一区二区三区-四虎国产精品亚洲精品-最新中文字幕日本久久-午夜性色福利在线视频| 五月六月丁花香激情综合网-久久这里只有精品好国产-很淫很堕落第一版主网-亚洲精品欧美精品国产精品| 四虎在线观看视频官网-国产免费一区二区不卡-色老99久久九九爱精品-巨乳人妻在线中文字幕| 亚洲黄色精品在线播放-国产精品对白在线播放-日韩熟女熟妇久久精品综合-人妻人妻少妇在线系列| 精品女同一区二区免费播放-四虎成人精品国产永久免费-日韩在线播放av不卡一区二区-久热久草香蕉在线视频| 麻豆视频传媒在线免费看-亚洲性码不卡视频在线-岛国av色片免费在线观看-久久久国产精品视频大全| 熟女国产精品一区二区三-一区二区三区av这些免费观看-精品国产一区二区二三区在线观看-国产精品一品二区三区日韩| 中文人妻久久精品一区二区-国产男女猛烈无遮挡免费视频网址-午夜福利成人一区二区三区在线-岛国av一区二区国产精品| 国产一区二区三区在线播放-偷拍女厕尿尿在线免费看-午夜一区二区三区三区-国产精品一区二区三上人妻| 成人av毛片18岁免费看-亚洲熟妇av一区二区三区宅男-欧美日韩另类视频在线观看-另类亚洲国产另类亚洲| 福利午夜视频在线观看-亚洲国产精品久久av麻豆-人妻被中出忍不住呻吟-国产极品尤物在线精品福利一区| 精品国产一区二区三区色搞-国产极品尤物精品视频-亚洲中文字幕乱码亚洲-午夜日本福利在线观看| 国产精品毛片二区视频播-尤物视频在线看免费观看-亚洲中文字幕亚洲中文字幕-日本黄色成人福利网站| 人妻av久久人妻水蜜桃-国产一区视频在线二区-五月婷六月丁香久久综合-国产精品中文字幕有码| 我要去外滩路线怎么走-97在线看片免费视频-秋霞电影国产精品麻豆天美-亚洲天堂资源在线免费观看| 国产自拍在线视频免费观看-精品午夜福利一区二区三区-日韩av在线免费观看毛片-国产三级黄色片在线观看| 蜜桃av在线国产精品-久久精品国产水野优香-亚洲午夜激情免费在线-97精品国产97久久久久久久免费| 国产成人啪午夜精品网站-国产乱码精品一区二区三区-男人天堂网av一区二区三区四区-亚洲第一区二区精品三区在线| 美女福利视频一区二区-在线观看你懂的日韩精品亚洲-男女丁丁一进一出视频-蜜臀av一区二区三区精品人妻|