色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

1.Development of Cryogenic Treatment Process

Cryogenic treatment usually adopts liquid nitrogen cooling, which can cool the workpiece to below – 190 ℃. The microstructure of the treated material changes at low temperature, and some properties are improved. Cryogenic treatment was first proposed by the former Soviet Union in 1939. It was not until the 1960s that the United States applied the cryogenic treatment technology to the industry and began to use it mainly in the aviation field. In the 1970s, it expanded to the machinery manufacturing field.

According to different cooling methods, it can be divided into liquid method and gas method. The liquid method means that the material or workpiece is directly immersed in liquid nitrogen to cool the workpiece to liquid nitrogen temperature, and the workpiece is kept at this temperature for a certain period of time, then it is taken out and heated to a certain temperature. It is difficult to control the speed of temperature rise and fall in this way, which has a large thermal impact on the workpiece and is generally believed to be likely to cause damage to the workpiece. Cryogenic equipment is relatively simple, such as liquid nitrogen tank.

2.gas method?of Cryogenic treatment

The gas principle is to cool by the gasification latent heat of liquid nitrogen (about 199.54kJ/kg) and the heat absorption of low-temperature nitrogen. The gas method can make the cryogenic temperature reach – 190 ℃, so that the cryogenic nitrogen can contact the materials. Through convection heat exchange, the nitrogen can be vaporized in the cryogenic box after being ejected from the nozzle. The workpiece can be cooled by the latent heat of gasification and the heat absorption of cryogenic nitrogen. By controlling the input of liquid nitrogen to control the cooling rate, the cryogenic treatment temperature can be automatically adjusted and accurately controlled, and the thermal shock effect is small, so is the possibility of cracking.

At present, the gas method is widely recognized by researchers in its application, and its cooling equipment is mainly a programmable cryogenic box with controllable temperature. Cryogenic treatment can significantly improve the service life, wear resistance and dimensional stability of ferrous metals, nonferrous metals, metal alloys and other materials, with considerable economic benefits and market prospects.

The cryogenic technology of cemented carbide was first reported in the 1980s and 1990s. Mechanical Technology of Japan in 1981 and Modern Machine Shop of the United States in 1992 reported that the performance of cemented carbides was significantly improved after cryogenic treatment. Since the 1970s, the research work on cryogenic treatment abroad has been fruitful. The former Soviet Union, the United States, Japan and other countries have successfully used cryogenic treatment to improve the service life of tools and dies, wear resistance of workpieces and dimensional stability.

4 Key points you may need to know about Cryogenic Treatment Process 1

3.Strengthening mechanism of cryogenic treatment

Metal phase reinforcement.

Co in cemented carbides has fcc crystal structure α Phase (fcc) and close packed hexagonal crystal structure ε Phase (hcp). ε- Co ratio α- Co has small friction coefficient and strong wear resistance. Above 417 ℃ α The free energy of phase is low, so Co α Phase form exists. Below 417 ℃ ε Low free energy of phase, stable phase at high temperature α Phase transition to low free energy ε Phase. However, due to WC particles and α The existence of solid solution heteroatoms in the phase has a greater constraint on the phase transition, making α → ε When the phase change resistance increases and the temperature drops below 417 ℃ α The phase cannot be completely transformed into ε Phase. Cryogenic treatment can be greatly increased α And ε Two phase free energy difference, thus increasing the driving force of phase change ε Phase change variable. For the cemented carbide after cryogenic treatment, some atoms dissolved in Co precipitate in the form of compound due to the decrease of solubility, which can increase the hard phase in the Co matrix, hinder dislocation movement, and play a role in strengthening the second phase particles.

Strengthening of surface residual stress.

The study after cryogenic treatment shows that the surface residual compressive stress increases. Many researchers believe that a certain value of residual compressive stress in the surface layer can greatly improve its service life. During the cooling process of cemented carbide after sintering, the bonding phase Co is subject to tensile stress, and the WC particles are subject to compressive stress. The tensile stress has great damage to Co. Therefore, some researchers believe that the increase of surface compressive stress caused by deep cooling slows down or partially offsets the tensile stress generated by the bonding phase during the cooling process after sintering, or even adjusts it to compressive stress, reducing the generation of microcracks.

Other strengthening mechanisms

It is believed that η The phase particles together with WC particles make the matrix more compact and firm, and due to η The formation of the phase consumes the Co in the matrix. The decrease of Co content in the bonding phase increases the overall thermal conductivity of the material, and the increase of carbide particle size and adjacency also increases the thermal conductivity of the matrix. Due to the increase of thermal conductivity, the heat dissipation of tool and die tips is faster; The wear resistance and high temperature hardness of tools and dies are improved. Others believe that after cryogenic treatment, due to the shrinkage and densification of Co, the firm role of Co in holding WC particles is strengthened. Physicists believe that deep cooling has changed the structure of atoms and molecules of metals.

4.A Case of YG20 Cold Heading Die with Cryogenic Treatment

Operation steps of YG20 cold pier formwork cryogenic treatment:

(1) Put the sintered cold heading die into the cryogenic treatment furnace;

(2) Start the cryogenic tempering integrated furnace, open the liquid nitrogen, reduce it to – 60 ℃ at a certain rate, and keep the temperature for 1h;

(3) Reduce to – 120 ℃ at a certain rate, and keep the temperature for 2h;

(4) Reduce the temperature to – 190 ℃ at a certain cooling rate, and keep the temperature for 4-8h;

(5) After the heat preservation, the temperature shall be raised to 180 ℃ according to 0.5 ℃/min for 4h

(6) After the program equipment is completed, it will be automatically powered off and naturally cooled to room temperature.

Conclusion: The YG20 cold heading die without cryogenic treatment and after cryogenic treatment is cold headed Φ 3.8 Carbon steel screw rod, the results show that the service life of the die after cryogenic treatment is more than 15% longer than that of the die without cryogenic treatment.4 Key points you may need to know about Cryogenic Treatment Process 2

4 Key points you may need to know about Cryogenic Treatment Process 3
(a) Before YG20 cryogenic treatment
(b) After YG20 cryogenic treatment

It can be seen that compared with that before cryogenic treatment, the face centered cubic cobalt (fcc) in YG20 after cryogenic treatment is significantly reduced, ε- The obvious increase of Co (hcp) is also the reason for the improvement of wear resistance and comprehensive properties of cemented carbides.

5.Limitations of cryogenic treatment process

The practical application results of a tool and die company in the United States show that the service life of cemented carbide inserts after treatment is increased by 2~8 times, while the dressing cycle of cemented carbide wire drawing dies after treatment is extended from several weeks to several months. In the 1990s, domestic research on cryogenic technology of cemented carbide was carried out, and certain research results were achieved.

In general, the research on cryogenic treatment technology of cemented carbide is less developed and not systematic at present, and the conclusions obtained are also inconsistent, which needs further in-depth exploration by researchers. According to the existing research data, cryogenic treatment mainly improves the wear resistance and service life of cemented carbide, but has no obvious effect on physical properties.

Leave a Reply

Your email address will not be published. Required fields are marked *

天天射天天插天天色综合-亚洲一二三四区中文字幕-97视频精品在线观看-久久婷婷激情五月综合色| 欧美日韩你懂的在线观看-国产欧美日韩亚洲一区二区-国产无遮挡裸体免费久久-亚洲国内精品久久久久久| 亚洲高清精品偷拍一区二区-日本午夜理论一区二区在线观看-乱天堂黑夜的香蕉颜姿-天堂精品人妻一卡二卡| 国产精品国产三级在线试看-亚洲男人天堂一区二区在线观看-风韵丰满熟妇啪啪区99杏-最近中文字幕日韩有码| 日本黄网站三级三级三级-91网址免费在线观看-肥老熟女性强欲五十路-无套内谢少妇高朝毛片| 国产福利一区二区写真-久久国产电影在线观看-亚洲国产一区二区三区亚瑟-中文字幕乱码亚洲无线码二区| 日本厕所偷拍美女尿尿视频-婷婷国产一区综合久久精品-欧美一日韩成人在线视频-四虎精品视频免费在线观看| 国产成人高清视频在线观看免费-人妻精品一区二区在线视频-国产成人一区二区三区精品久久-农村肥白老熟妇20p| 日韩有色视频在线观看-久久亚洲精品一区二区三区-风韵犹存久久一区二区三区-日本最黄网站在线观看| 麻豆免费播放在线观看-在线观看成人午夜福利-亚洲华人在线免费视频-国产极品超大美女白嫩在线| 日韩国产自拍在线视频-亚洲av午夜激情在线播放-午夜福利你懂的在线观看-少妇特殊按摩高潮惨叫| 精品国产一区二区三区吸毒-国产精品一品二区精品网站-偷拍美国美女厕所撒尿-日韩精品在线视频一二三| 少妇无套内谢免费视频-色婷婷性感在线观看视频-国产免费黄色一级大片-国产亚洲精品麻豆一区二区| 麻豆国产av一区二区精品-久久福利社最新av高清精品-丝袜美腿亚洲综合伊人-亚洲欧洲av一区二区三区| 中文一区二区三区免费毛片-99久久久69精品一区二区三区-精品国产一级二级三级在线-初撮五十路熟女柏木舞子| 天天躁夜夜躁狠狠85麻豆-操美女逼视频免费软件-国产精品一区二区在线观看-一区二区三区免费观看视频在线| 日产中文字幕在线精品一区-日韩黄色特级片一区二区三区-8x8x精品国产自在现线拍-内射爆操视频在线观看| 成人av亚洲男人色丁香-色丁香婷婷综合缴情综-国产男女视频免费观看-日韩有码中文字幕一区八戒| 久久这里就有国产熟女精品-国产免费一级特黄录像-伊人久久热这里只有精品-国产三级一区二区三区在线观看| 亚洲国产精品无吗一区二区-伊人久久综合在线观看-欧美日韩在线精品视频二区-国产精品一区二区国产主播| 免费av毛片在线观看-av大全网站免费一区二区-欧美激情亚洲一区中文字幕-亚洲中文字幕久久精品| 亚洲乱码中文字幕综合-欧美日韩亚洲综合久久精品-美女隐私无遮挡免费网站-国产精品激情av在线播放| 91大神麻豆精品在线-熟女av综合一区二区三区-在线播放亚洲国产一区二区三-亚洲精品日韩在线丰满| 绯色高清粉嫩国产精品-色偷偷亚洲偷自拍视频-国产性感午夜天堂av-**精品中文字幕一区二区三区| 亚洲人妻av在线播放-日韩午夜短视频在线观看-91精品久久午夜中文字幕-亚洲熟伦熟女新五十熟妇| 女同在线播放中文字幕-国产成人亚洲精品在线看-日韩有码在线观看视频-蜜桃av噜噜一区二区三区视频| 成人av亚洲男人色丁香-色丁香婷婷综合缴情综-国产男女视频免费观看-日韩有码中文字幕一区八戒| 色综合久久中文综合网亚洲-久久精品午夜亚洲av-男人的天堂av日韩亚洲-91欧美激情在线视频| 成人精品视频一区二区三区不卡-中文字幕一区二区三区在线乱码-国产无av码在线观看麻豆-成年人三级自拍片自拍| 3p人妻一区二区三区-亚洲精品国产高清自拍-女同国产日韩精品在线-亚洲午夜国产激情福利网站| 九九在线国产精品自拍-亚洲综合精品中文字幕-亚州国产成人综合精品-人妻少妇久久精品中文| 日本高清成人一区二区三区-亚洲国产精品久久成人-91福利国产午夜亚洲精品-极品激情国产剧情av| 精品人妻一区二区三区四区石在线-国产精品国产三级国产三级人妇-午夜激情精品在线观看-一本久道视频蜜臀视频| 国语对白高清在线观看-久久av精品一区二区三区-日韩在线中文字幕不卡-免费视频成人高清观看在线播放| 国产一区二区在线中文字幕-欧洲中文字幕国产精品-国产精品蜜臀av免费观看四虎-国产一级特黄99久久| 日本高清不卡码一区二区三区-国产性色av高清在线观看-亚洲黄色免费在线观看网站-亚洲性视频免费视频网站| 欧美激情一级欧美精品-国产一区二区在线免费视频观看-日韩不卡视频免费在线观看-国产成人深夜在线观看| 91久久国产综合蜜桃-深夜激情在线免费观看-免费观看国产在线视频不卡-天堂在线精品免费亚洲| 男女公园上摸下揉视频-日本精品视频一二区-激情久久综合久久人妻-伊人成人综合在线视频| 欧美日韩精品综合国产-亚洲国产综合中文字幕-精品国产乱码一区二区三区四区-麻豆精品三级国产国语| 日本很污动漫在线观看-亚洲精品乱码国产精品乱码-日本亚洲一区二区三区四区-少妇高潮太爽了免费观看|