色呦呦网址在线观看,久久久久久久久福利精品,国产欧美1区2区3区,国产日韩av一区二区在线

UPAC separates pores into micropores (<2 nm), mesopores or mesopores (2 to 50 nm), macropores (> 50 nm) according to the pore size scale; according to the latest definition, the pores are subdivided into Micropores (<0.7 nm) and micropoles (0.7-2 nm), while wells below 100 nm are collectively referred to as nanopores. So how are the names of these hole materials come from?

MCM series

MCM is short for Mobil Composition of Matter. Mainly by the Mobil Oil researchers, using ethyl silicate as a silicon source, synthesized by a micelle-based soft template method. MCM The Musketeers are MCM-41, MCM-48 and MCM-50. MCM-41 is a hexagonal mesoporous structure, the arrangement of a regular cylindrical mesopores made of one-dimensional pore structure. Mesopore diameter adjustable between 2-6.5 nm, large specific surface area. Compared to molecular sieves, there is no Bronsted acid sites in MCM-41. Due to its thin wall and low exchange rate of silicon units, Si-O bonds hydrolyze and re-crosslink in boiling water, resulting in structural damage. Therefore, Thermal stability is not good. The earliest papers on the synthesis of MCM-41 were published in the JACs in 1992, and the citations now have nearly 12,000 citations. (J. Am. Chem. Soc., 1992, 114 (27), pp 10834-10843.) MCM-48 has a three-dimensionally interconnected cell structure. MCM-50 is a lamellar structure and can only be referred to as “mesostructure” rather than “mesoporous” since the lamellar structure collapses upon removal of the surfactant-forming layer, and since there is no pore, this is not Deep down. 

14 Common Types Of Porous Materials 2
Figure 1 MCM-41 synthesis mechanism diagram, the surfactant used is an anionic surfactant

SBA series

SBA is short for Santa Barbara Amorphous. Among them, the big name is SBA-15. SBA-15 was first synthesized by Zhao Dongyuan, a teacher at Fudan University in 1998 after doing a post-graduate study at Santa Barbara, University of California, U.S.A. It was published in Science that year and has been quoted for more than 10,000 times (Science 23 Jan 1998: 279, 5350, 548-552.). SBA series of mesoporous silica materials are synthesized using a soft template method using a block type surfactant; its pore size is adjustable in the range of 5-30 nm. SBA-15 consists of a series of hexagonal parallel cylindrical channels with a few mesopores or pores arranged in random order with a cell wall thickness of 3-6 nm. Due to the thicker cell walls of SBA-15, the hydrothermal stability of the material is better than that of the MCM series. SBA-15 is a multi-dimensional porous material that contains both mesoporous materials. It can remove the surfactant embedded in the pore walls during the calcination process, resulting in a microporous structure.

14 Common Types Of Porous Materials 3
Figure 2 (left) TEM image of SBA-15 with different pore sizes. The hydrophobic end of the (right) triblock surfactant will enter the pore walls of the formed silica. After calcination, the micropores

HMM series

HMM is an abbreviation of Hiroshima Mesoporous Material and was first prepared by researchers from Hiroshima University in 2009. HMM is a spherical mesoporous silicon material with a pore size of 4-15 nm and an adjustable outer diameter of 20-80 nm. In the synthesis step, the authors first form emulsion droplets through the oil / water / surfactant mixed solution and then grow the silicon with the in situ generated polystyrene particles as a template, resulting in spherical mesoporous silica after the template is removed. (Microporous and Mesoporous Materials 120 (2009) 447-453.)

14 Common Types Of Porous Materials 4
Figure 3 HMM synthesis mechanism diagram and product SEM and TEM images

TUD series

TUD stands for Technische Universiteit Delft, also known as Delft University of Technology. In the electron micrograph TUD-1 appears as a foam with a surface area of ??400-1000 m2 / g and a tunable mesopore between 2.5 and 25 nm. In the synthesis of materials, there is no surfactant, and triethylamine is used as organic template agent. The pore structure can be controlled by adjusting the ratio of organic template agent and silicon source. (Chem. Commun., 2001, 713-714)

14 Common Types Of Porous Materials 5
Figure 4 (left) SEM image of TDU-1, (right) Mesoporous carbon material synthesized with TDU-1 as a hard template

FSM series

FSM is short for Folded Sheets Mesoporous Materials. Literal translation of its name is, folded sheet mesoporous material. FSM synthesis is the synthesis of layered silicate material Kanemite and long-chain alkyl trimethylamine (ATMA) under alkaline conditions mixed treatment ion exchange occurs to obtain a narrow pore size distribution of three-dimensional hexagonal mesoporous silica material. FSC has a specific surface area of ??650-1000 m2 / g and a pore size of 1.5-3 nm. (Bull. Chem. Soc. Jpn., 69, No. 5 (1996))

14 Common Types Of Porous Materials 6
Figure 5 TEM diagram of the FSM

KIT series

KIT did not find a very official statement, most likely the abbreviation of Korea Advanced Institute of Science and Technology. Also belonging to the ordered mesoporous silica material, different from the SBA-15 (cubic p6mm) unidirectional pore structure, KIT-6 (cubic la3d) has interconnected cubic mesoporous structure. In the synthesis of KIT-6, a mixture of triblock surfactant (EO20PO70EO20) and butanol was used as a structure-directing agent. KIT-6 pore size adjustable in 4-12 nm, the specific surface area of ??960-2200 m2 g-1. (Chem. Commun., 2003, 2136-2137)

14 Common Types Of Porous Materials 7
Figure 6 (left) Structure diagram of SBA-15 p6mm and KIT-6 la3d, (right) TEM image of KIT-6

CMK series

The common method for synthesizing mesoporous carbon is the hard template method. Mesoporous molecular sieves such as MCM-48 and SBA-15 are used as template to select the appropriate precursors, carbonize the precursors under the catalysis of acid and deposit on the pores of mesoporous materials Road, and then dissolved with NaOH or HF mesoporous SiO2, to get mesoporous carbon. In 1999, Ryoo succeeded in replicating other mesoporous materials using mesoporous materials as hard templates. This series of materials named CMK. Also did not find the official naming, but most likely Carbon Molecular Sieves and Korea combined naming. He has successively produced CMK-1, CMK-2, CMK-3, CMK-8 and CMK-9 mesoporous carbon molecular sieve materials using MCM-48, SBA-1, SBA-15 and KIT-6 as templates. (J. Phys. Chem. B, 103, 37, 1999.) CMK-3 is a two-dimensional hexagonal structure with a narrow pore size distribution, high specific surface area (1000-2000 m2 / g), large pore volume 1.35 cm3 / g) and strong acid and alkali resistance, is a good catalyst carrier.

14 Common Types Of Porous Materials 8
Figure 7 TEM image of CMK-1 and CMK-3

FDU series

FDU series is short for Fudan University and is the work done by Zhao Dongyuan teacher after returning to Fudan University. FDU is a series of phenolic resins synthesized by soft-template method. The ordered mesoporous carbon materials can be synthesized by high-temperature carbonization and consist of spherical pores. The same is the use of surfactant as a structure-directing agent, the use of phenolic resin precursors as raw materials, by solvent evaporation self-assembly method to get the orderly structure. (Angew. Chem. Int. Ed. 2005, 44, 7053-7045)

14 Common Types Of Porous Materials 9
Figure 8 FDU-15 and FDU-16 after high-temperature carbonizationStarbon

STARBON Series

Starbon is the name of the mesoporous carbon material. Because the original Starbon was synthesized by researchers at the University of York by the sol-gel method of Starch and then carbonized. Therefore, its name is Starbon, and registered the brand name “Starbon”. Starbon mesopore volume of 2.0 cm3 / g, the specific surface area of ??500 m2 / g, can be used as a catalyst carrier, gas adsorption or water purification agent. Now Starbon raw materials can be extended to pectin and alginic acid.

14 Common Types Of Porous Materials 10
Figure 9 (left) Starbon synthesis step, (right) SEM image of Starbon

ZSM series

ZSM is an abbreviation for Zeolite Socony Mobil, and ZSM-5 is a trade name, which is the fifth Zeolite found by Socony Mobil Corporation. Synthetized in 1975, Nature reported its structure in 1978. ZSM-5 is an orthorhombic system. It is a kind of zeolite molecular sieve with three-dimensional cross-channels with high silicon and five-membered rings. It is oleophilic and hydrophobic, has high thermal and hydrothermal stability, and most of the pores have a diameter of about 0.55 nm Hole Zeolite.

14 Common Types Of Porous Materials 11
Figure 10 TPABr synthesized ZSM-5

AlPO series

AlPO is the abbreviation of acid-free microporous aluminophosphate molecular sieve, which is the “second-generation molecular sieve” developed by the UOP Company of the United States since the 1980s. These molecular sieve frameworks are composed of an equal amount of AlO4- and PO4- tetrahedra and are electrically neutral and show weaker acid-catalyzing properties. With the introduction of heteroatoms, the original charge balance of the AlPO zeolite framework can be broken down , So that its acidity, adsorption performance and catalytic activity were significantly improved. The framework structure of AlPO4-5 belongs to the hexagonal system, with a typical 12-membered ring main channel with a pore size of 0.76 nm, which is comparable to that of aromatics.

SAPO series

SAPO is the abbreviation from Silicoaluminophosphate, SAPO-34 is the molecular sieve first reported by UCC in 1982, and 34 is the code. The skeleton of SAPO-34 is composed of PO2 +, SiO2, AlO2- and has three-dimensional cross-channels, eight-ring pore diameter and moderate acid sites. As well as adsorption separation and membrane separation showed excellent performance. The composition of SAPO-11 is Si, P, Al and O four kinds, its composition can be changed in a wide range, the silicon content of the product varies with the synthesis conditions. SAPO-11 mesoporous zeolite, with one-dimensional ten-ring structure, into an oval hole. The SAPO molecular sieve framework is negatively charged and therefore has exchangeable cations and has protonic acidity. SAPO molecular sieve can be used as adsorbent, catalyst and catalyst carrier.

14 Common Types Of Porous Materials 12
Figure 11 SEM image of SAPO-11 with a crystallization time of 48h


There are several other Porous Materials that are not commonly used:
MSU  (Michigan State University) is a series of mesoporous molecular sieves developed by Pinnavaia et al. Of the University of Michigan. MSU-X (MSU-1, MSU-2 and MSU-3) . MSU-V, MSU-G have a layered structure of multilamellar vesicles.

HMS

(Hexagonal Mesoporous Silica) is a mesoporous molecular sieve developed by Pinnavaia et al., Which is also a hexagonal structure with a low degree of order.

APMs

(acid-prepared mesostructures), an early research by Stucky et al., Were prepared under acidic conditions and were an extension of the MCM series of synthetic processes (alkaline media).
Not only the name is very unique, the application of porous materials is also very extensive, are:

1. Efficient gas separation membrane;

2. Chemical process catalytic membrane;

3.Substrate materials for high-speed electronic systems;

4. precursors for optical communication materials;

5. highly efficient thermal insulation materials;

6. porous electrodes for fuel cells;

7. separation media and electrodes for batteries;

8. fuels (including natural gas and hydrogen) Of the storage medium;

9. Selection of environmentally clean up absorbent;

10. Special reusable filter. These applications will have a profound impact on industrial applications and people’s daily lives.


References:1. J. Am. Chem. Soc., 1992, 114 (27), pp 10834-10843.2. Science 23 Jan 1998: 279, 5350, 548-552.3. Microporous and Mesoporous Materials 120 (2009) 447-453.4. Chem. Commun., 2001, 713-714.5. Bull. Chem. Soc. Jpn., 69, No. 5 (1996)6. J. Chem. Soc., Chem. Commun. 1993, 8, 680.7. Chem. Commun., 2003, 2136-2137.8. J. Phys. Chem. B, 103, 37, 1999.9. Angew. Chem. Int. Ed. 2005, 44, 7053-7059.

Leave a Reply

Your email address will not be published. Required fields are marked *

国产精品97一区二区三区-四虎永久免费视频播放-久久五十路丰满熟女中出-国产18日韩亚洲欧美| 亚洲中文字幕五月五月婷-极品毛片av一区二区三区-欧美精品天堂一区二区不卡-精品一区二区不卡在线播放| 久久亚洲国产高清av一级-免费国产精品自偷自偷免费看-日本a级特黄三级三级三级-欧美日韩一区二区中文字幕高清视频| 男女公园上摸下揉视频-日本精品视频一二区-激情久久综合久久人妻-伊人成人综合在线视频| 九九热在线免费视频播放-久久综合九色综合久久久-国产粉嫩小仙女裸体区一区二-中文字幕巨乳人妻在线| 亚洲欧洲偷拍自拍av-日韩午夜福利剧场久久-午夜福利成人在线视频-91午夜福利在线观看精品| 亚洲av午夜精品久久看一区-日韩欧美91麻豆精东-久久一区二区三区在线观看-国产黄色人人爱人人做| 九九热在线视频精品一-国产乱码精品一区二区蜜臀-乱妇乱熟女妇熟女网站视频-国产精品午夜视频在线| 欧洲激情综合啪啪五月-国产精选三级在线观看-七七久久成人影院网站-男人深夜福利在线观看| 久久精品国产亚洲av麻豆看片-内射后入高潮在线视频-亚洲精品一区三区三区在线-亚洲乱码一区二区三区视色| 人妻少妇精品久久中文字幕-在线免费观看亚洲小视频-网友偷拍视频一区二区三区-亚洲国产精品日韩av在线| 日韩欧美国产在91啦-激情偷拍自拍在线观看-一本大道久久香蕉成人网-亚洲精品中文字幕观看| 四虎精品高清在线观看-日韩有码国产中文字幕-国产一区二区三区亚洲污在线观看-亚洲av永久久无久之码精| 欧美日韩精品综合国产-亚洲国产综合中文字幕-精品国产乱码一区二区三区四区-麻豆精品三级国产国语| 美女福利视频一区二区-在线观看你懂的日韩精品亚洲-男女丁丁一进一出视频-蜜臀av一区二区三区精品人妻| 亚洲免费视频免费视频-年轻人的性生活免费视频-亚洲国产aa精品一区二区高清-可以免费看的av毛片| 久久久精品国产亚洲av高清涩受-国产精品一区二区三区成人-欧美日韩国产精品视频一区二区三区-大陆美女阴户特写毛片| 国产精品乱码一区二区三区-亚洲国产日本不卡一卡-日韩av手机免费网站-国产精品日韩在线亚洲一区| 办公室女厕偷拍美女撒尿-日本成人看片一区二区在线-丰满熟女少妇午夜福利-少妇被爽到高潮在线观看| 中美高清在线观看av-精品视频中文字幕天码-日韩高清一二三区在线观看-精品人妻91一区二区三区| 91九色国产成人久久精品-亚洲av无一区二区三区av中文-最新日本加勒比在线视频-激情综合激情五月婷婷| 91九色精品人成在线观看-国产成人免费综合激情-新久久国产色av免费看-av网站国产主播在线| 日韩精品人妻视频一区二区三区-国产经典一区二区三区四区-亚洲中文视频免费在线观看-美女自拍大秀福利视频| 久久精品中文字幕久久-国产尤物精品在线观看-久久精品久久精品亚洲国产av-熟妇人妻中文字幕在线| 国产精品日本一区二区不卡视频-尤物在线视频免费观看-中文字幕精品高清中国-最新精品国产自偷在自线| 丰满女性丰满女性性教视频-国产日韩欧美精品av-日韩区一区二区三区在线观看-四虎国产精品成人免费久久| 国产成人精品一区二区日出白浆-亚洲女优大片在线观看-明星换脸av一区二区三区-四虎影院国产精品久久| 蜜臀一区二区在线观看视频-亚洲一区二区国产精品视频-国内精品国产三级国产a久久-婷婷久久亚洲中文字幕| 亚洲av色香一区二区三含羞草-av毛片在线观看网站-中文字幕一区二区人妻中文字-91精品人妻日韩一区二区| 日本在线有码中文视频-精品亚洲综合一区二区三区-国产午夜福利一级二级三级-天堂三级成人久久av| 日韩三级一区二区三区高清-亚洲插入视频在线观看-91精品中文字幕一区二区三区-精品一区二区三区男人吃奶视频| 一区二区三区岛国av毛片-国产男女无遮挡猛进猛-久久精品人妻丝袜乱一区二区三区-国产超级对对碰在线观看| 日本一区二区中文字幕久久-日本高清一区二区在线-视频在线观看播放免费-精品国产91av一区二区三区| 亚洲高清无吗视频在线播放-国产亚洲最新在线不卡-久久亚洲国产精品成人-二区三区在线免费观看视频| 欧美av黄片在线观看-黄片国产一级片在线观看-国产精品黄色精品黄色大片-一区二区三区国产日本欧美| 18禁无遮挡美女国产-久久精品国产精品亚洲毛片-国内精品极品在线视频看看-日本二区 欧美 亚洲 国产| 国产色片地址网日本激情-国产自偷在线拍精品热不卡-国产精品自产拍蜜臀av在线-成人区人妻精品一区二区三区| 亚洲精品一区网站在线观看-亚洲精品一区二区三区婷婷月-国产aⅴ精品一区二区三区久久-在线综合亚洲中文精品| 最好韩国日本免费高清-蜜桃视频一区二区三区在线观看-国产精品黄色大片在线看-日本高清视频亚洲不卡| 欧美日韩激情片在线观看-色男人天堂网在线观看-亚洲一级特黄大片免色-国产十八禁免费在线观看| 亚洲av成人午夜福利-青青草华人在线视频观看-久久99国产亚洲高清-中文字幕一区二区三区乱码人妻|